Association between gene and repair pathways activated often related to response of a neoadjuvant treatment in rectal cancer: a literary review using Cbio Portal and PubMed
DOI:
https://doi.org/10.61411/rsc202467717Palavras-chave:
Oncogenes; Rectal cancer; Neoadjuvant treatment; Clinical outcomeResumo
Summary
This scientific article intends to study the topic of association between genes and ways of repair often related to a neoadjuvant treatment of rectal cancer by means of literature review. In doing so, it is essential to understand cancer, its diagnosis and therapies available according to location, growth and possible metastases, analyzing how such drugs act under cancer cells. In addition, this project also addresses how the affected cells react under the treatment in which they are receiving, showing how they can evade pharmacological actions and, on the other side, how some are unable to repair the damage caused by the treatment, while able to evaluate the patient's prognosis and their chances of survival. There is a way as a point of evaluation the machanisms of cellular repair summarizing in stages, observing the DNA integrity of tumor cells and expression of repair genes involved in the repair caused by gene mutations such as 5FU, given incapacitated tumors that activate 5FU are more resistant to treatments. For such study, the Cbio Portal platform was used to research the activated pathways of protein synthesis by carcinogenic DNA repair genes that other studies have already researched, using keywords.
As a point of view, analyzing the resistance of the tumor to oncological treatment, researching the activated pathways of protein synthesis by carcinogenic DNA repair genes in relation to genes that activate these pathways in the context of rectal cancers, more precisely the
rectal adenocarcinoma, serves as a source of updating knowledge and it can be useful as a theoretical basis for new therapies, studies against rectal cancers.
Referências
Bressani, R. F., Guntzel, P. L. C., Hahn, L., Bettanzo, L. N., & Fillmann, L. (n.d.). RECTUM CANCER MANEGEMENT MANEJO DO CÂNCER DE RETO. Bvsalud.org. Retrieved March 30, 2024. Disponível em:
Knijnenburg, T. A., Wang, L., Zimmermann, M. T., Chambwe, N., Gao, G. F., Cherniack, A. D., Fan, H., Shen, H., Way, G. P., Greene, C. S., Liu, Y., Akbani, R., Feng, B., Donehower, L. A., Miller, C., Shen, Y., Karimi, M., Chen, H., Kim, P., … Mariamidze, A. (2018). Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Reports, 23(1), 239-254.e6. https://doi.org/10.1016/j.celrep.2018.03.076. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29617664/
Weeden, C. E., & Asselin-Labat, M.-L. (2018). Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochimica et Biophysica Acta. DOI: https://doi.org/10.1016/j.bbadis.2017.10.015
Molecular Basis of Disease, 1864(1), 89–101. https://doi.org/10.1016/j.bbadis.2017.10.015. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29038050/
Weinstein, J. N., The Cancer Genome Atlas Research Network, Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., & Stuart, J. M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120. Disponível em: https://doi.org/10.1038/ng.2764 DOI: https://doi.org/10.1038/ng.2764
Li, Y., Kang, K., Krahn, J. M., Croutwater, N., Lee, K., Umbach, D. M., & Li, L. (2017). A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genomics, 18(1). Disponível em: DOI: https://doi.org/10.1186/s12864-017-3906-0
https://link.springer.com/article/10.1186/s12864-017-3906-0
Zhang K., & Wang H. (2015). Cancer Genome Atlas Pan-cancer Analysis Project. Zhongguo fei ai za zhi [Chinese journal of lung cancer], 18(4), 219–223. https://doi.org/10.3779/j.issn.1009-3419.2015.04.02. Disponível em: https://www.proquest.com/openview/814f3158011866e7c74f5ace7e091dba/1?pqorigsite=gscholar&cbl=205
The Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. https://doi.org/10.1038/nature11252. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22810696/ DOI: https://doi.org/10.1038/nature11252
Colorectal Adenocarcinoma (TCGA, PanCancer Atlas) data. (2019). [Data set]. The
Cancer Genome Atlas (TCGA). Disponível em: https://datacatalog.mskcc.org/dataset/10411
Williett CG, Ryan DP. Neoadjuvant chemoradiotherapy and radiotherapy for rectal adenocarcinoma. [Database on internet]. 2015 Apr. [updated 2015 Mar, cited 2015 abr
Disponível em: http://www.uptodate.com/contents/neoadjuvantchemoradiotherapy- and-radiotherapy-for-rectal-
Bleday R, Shibata D. Surgical oncologic principles for resection of primary rectal adenocarcinoma. [Database on internet]. 2015 Apr. [updated 2015 Feb, cited 2015 abr 10] Disponível em: http://www.uptodate.com/contents/surgical-oncologic-principlesfor-resection-of-primary-rectal-
Bass AJ, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A–TCF7L2 fusion. Nature Genet. 2011;43:964–968. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21892161/
Shen, M., Schmitt, S., Buac, D., & Dou, Q. P. (2013). Targeting the ubiquitin– proteasome system for cancer therapy. Expert Opinion on Therapeutic Targets, 17(9), 1091–1108. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23822887/ DOI: https://doi.org/10.1517/14728222.2013.815728
Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe,
A., Colaprico, A., Wendl, M. C., Kim, J., Reardon, B., Ng, P. K.-S., Jeong, K. J., Cao,
S., Wang, Z., Gao, J., Gao, Q., Wang, F., Liu, E. M., Mularoni, L.,Mariamidze, A. (2018). Comprehensive characterization of cancer driver genes and mutations. Cell, 173(2), 371-385.e18. Disponível em: https://www.cell.com/cell/fulltext/S0092-8674(18)30237-
X?_returnURL=https://linkinghub.elsevier.com/retrieve/pii/S009286741830237X?sho wall=true
Aravind, L. (1999). Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Research, 27(5), 1223–1242. Disponível em: https://pubmed.ncbi.nlm.nih.gov/9973609/ DOI: https://doi.org/10.1093/nar/27.5.1223
Barbari, S. R., & Shcherbakova, P. V. (2017). Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy. DNA Repair, 56, 16–25. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28687338/ DOI: https://doi.org/10.1016/j.dnarep.2017.06.003
Bellido, F., Pineda, M., Aiza, G., Valdés-Mas, R., Navarro, M., Puente, D. A., Pons, T., González, S., Iglesias, S., Darder, E., Piñol, V., Soto, J. L., Valencia, A., Blanco, I., Urioste, M., Brunet, J., Lázaro, C., Capellá, G., Puente, X. S., & Valle, L. (2016). POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genetics in Medicine: Official Journal of the American College of DOI: https://doi.org/10.1038/gim.2015.75
Medical Genetics, 18(4), 325–332. Disponível em: https://www.gimjournal.org/article/S1098-3600(21)04329-X/fulltext
Publicado
Licença
Copyright (c) 2024 Revista Sociedade Científica
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.